Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 16(3): 940-954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586090

RESUMO

OBJECTIVES: To elucidate the expression levels and prognostic value of the Lipoyltransferase 2 (LIPT2) gene in a pan-cancer view. METHODOLOGY: Our study comprehensively investigated the role of LIPT2 in pan-cancer, combining bioinformatics analyses with experimental validations. RESULTS: Analysis of LIPT2 mRNA expression across various cancers revealed a significant up-regulation in 18 tumor types and down-regulation in 8 types, indicating its diverse involvement. Prognostic assessment demonstrated a correlation between elevated LIPT2 expression and poorer outcomes in Overall Survival (OS) and Disease-Free Survival (DFS), particularly in Glioblastoma Multiforme (GBM), Liver Hepatocellular Carcinoma (LIHC), and Pheochromocytoma and Paraganglioma (PCPG). Protein expression analysis in GBM, LIHC, and PCPG affirmed a consistent increase in LIPT2 levels compared to normal tissues. Examining the methylation status in GBM, LIHC, and PCPG, we found reduced promoter methylation levels in tumor samples, suggesting a potential influence on LIPT2 function. Genetic mutation analysis using cBioPortal indicated a low mutation frequency (< 2%) in LIPT2 across GBM, LIHC, and PCPG. Immune correlation analysis unveiled a positive association between LIPT2 expression and infiltration levels of immune cells in GBM, LIHC, and PCPG. Single-cell analysis illustrated LIPT2's positive correlation with functional states, including angiogenesis and inflammation. Enrichment analysis identified LIPT2-associated processes and pathways, providing insights into its potential molecular mechanisms. Drug sensitivity analysis demonstrated that elevated LIPT2 expression conferred resistance to multiple compounds, while lower expression increased sensitivity. Finally, RT-qPCR validation in HCC cell lines confirmed the heightened expression of LIPT2 compared to a control cell line, reinforcing the bioinformatics findings. CONCLUSION: Overall, our study highlights LIPT2 as a versatile player in cancer, influencing diverse aspects from molecular processes to clinical outcomes across different cancer types.

2.
Am J Transl Res ; 16(3): 873-888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586106

RESUMO

OBJECTIVES: In this comprehensive study spanning 33 malignancies, we explored the differential expression and prognostic significance of Heparan sulfate 6-O-sulfotransferase 2 (HS6ST2). METHODS: TIMER2, UALCAN, and GEPIA2 were used for the expression analysis. cBioPortal was used for mutational analysis. CancerSEA, STRING, and DAVID, were employed for the single cell sequencing data analysis, protein-protein interaction network development, and gene enrichment analyses, respectively. GSCAlite and RT-qPCR were used for drug sensitivity and expression validation analysis. RESULTS: HS6ST2 exhibited significant (P < 0.05) overexpression in multiple cancers. Prognostically, elevated HS6ST2 expression was significantly associated with poor overall survival (OS) in patients with cervical squamous cell carcinoma (CESC), kidney chromophobe (KICH), lung adenocarcinoma (LUAD), and stomach adenocarcinoma (STAD), emphasizing its potential as a prognostic indicator in these cancers. Moreover, HS6ST2 expression correlated with pathological stages in CESC, KICH, LUAD, and STAD patients. Exploration of genetic alterations using cBioPortal unveiled distinct mutational landscapes, with low mutation frequencies in CESC, KICH, LUAD, and STAD. Additionally, reduced DNA methylation in CESC, KICH, LUAD, and STAD suggested a potential link between hypomethylation and heightened HS6ST2 expression. Analysis of immune cell infiltration revealed a positive correlation between HS6ST2 expression and the infiltration of CD8+ T and CD4+ T cells in CESC, KICH, LUAD, and STAD, highlighting its involvement in the tumor immunology processes. Single-cell functional states analysis demonstrated associations between HS6ST2 and diverse cellular processes. Moreover, gene enrichment analysis revealed the involvement HS6ST2 in crucial cellular activities. GSCAlite analysis underscored the potential of HS6ST2 as a therapeutic target, showing associations with drug sensitivity. Finally, experimental validation through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in LUAD tissues confirmed elevated HS6ST2 expression. CONCLUSION: Overall, this study provides a comprehensive understanding of HS6ST2 in CESC, KICH, LUAD, and STAD, emphasizing its potential as a prognostic biomarker and therapeutic target.

3.
Am J Transl Res ; 16(3): 738-754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586115

RESUMO

OBJECTIVES: While dysregulation of DSCC1 (DNA Replication And Sister Chromatid Cohesion 1) has been established in breast cancer and colorectal cancer, its associations with other tumors remain unclear. Therefore, this study was launched to explore the role of DSCC1 in pan-cancer. METHODOLOGY: In this study, we investigate the biological functions of DSCC1 across 33 solid tumors, elucidating its role in promoting oncogenesis and progression in various cancers through comprehensive analysis of multi-omics data. RESULTS: We conducted a comprehensive analysis of DSCC1 expression using RNA-seq data from TCGA and GTEx databases across 30 cancer types. Striking variations were observed, with significant overexpression of DSCC1 identified in numerous cancers. Elevated DSCC1 level was strongly associated with poorer prognosis, shorter survival, and advanced tumor stages in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), as indicated by Kaplan-Meier curves and GEPIA2 analysis. Further investigation into the molecular mechanisms revealed reduced DNA methylation in the DSCC1 promoter region in KIRP, LIHC, and LUAD, supporting enhanced RNA transcription. Protein expression analysis via the Human Protein Atlas (HPA) corroborated mRNA expression findings, showcasing elevated DSCC1 protein in KIRP, LIHC, and LUAD tissues. Mutational analysis using cBioPortal revealed alterations in 0.4% of KIRP, 17% of LIHC, and 5% of LUAD samples, predominantly characterized by amplification. Immune cell infiltration analysis demonstrated robust positive correlations between DSCC1 expression and CD8+ T cells, CD4+ T cells, and B cells, influencing the tumor microenvironment. STRING and gene enrichment analyses unveiled DSCC1's involvement in critical pathways, emphasizing its multifaceted impact. Notably, drug sensitivity analysis highlighted a significant correlation between DSCC1 mRNA expression and responses to 78 anticancer treatments, suggesting its potential as a predictive biomarker and therapeutic target for KIRP, LIHC, and LUAD. Finally, immunohistochemistry staining of clinical samples validated computational results, confirming elevated DSCC1 protein expression. CONCLUSION: Overall, this study provides comprehensive insights into the pivotal role of DSCC1 in KIRP, LIHC, and LUAD initiation, progression, and therapeutic responsiveness, laying the foundation for further investigations and personalized treatment strategies.

4.
J Mol Neurosci ; 74(1): 11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231435

RESUMO

Diabetic retinopathy (DR) stands as a prevalent complication of diabetes mellitus, causing damage to the delicate retinal capillaries and potentially leading to visual impairment. While the exact underlying cause of DR remains elusive, compelling research suggests that mitochondrial energy deficiency and the excessive generation of reactive oxygen species (ROS) play pivotal roles in its pathogenesis. Recognizing that controlling hyperglycemia alone fails to reverse the defects in retinal mitochondria induced by diabetes, current strategies seek to restore mitochondrial function as a means of safeguarding against DR. To address this pressing issue, a comprehensive study was undertaken to explore the potential of phosphocreatine (PCr) in bolstering mitochondrial bioenergetics and providing protection against DR via modulation of the JAK2/STAT3 signaling pathway. Employing rat mitochondria and RGC-5 cells, the investigation meticulously assessed the impact of PCr on ROS production, mitochondrial membrane potential, as well as the expression of crucial apoptotic and JAK2/STAT3 signaling pathway proteins, utilizing cutting-edge techniques such as high-resolution respirometry and western blotting. The remarkable outcomes revealed that PCr exerts a profound protective influence against DR by enhancing mitochondrial function and alleviating diabetes-associated symptoms and biochemical markers. Notably, PCr administration resulted in an upregulation of antiapoptotic proteins, concomitant with a downregulation of proapoptotic proteins and the JAK2/STAT3 signaling pathway. These significant findings firmly establish PCr as a potential therapeutic avenue for combating diabetic retinopathy. By augmenting mitochondrial function and exerting antiapoptotic effects via the JAK2/STAT3 signaling pathway, PCr demonstrates promising efficacy both in vivo and in vitro, particularly in counteracting the oxidative stress engendered by hyperglycemia. In summary, our study sheds light on the potential of PCr as an innovative therapeutic strategy for diabetic retinopathy. By bolstering mitochondrial function and exerting protective effects via the modulation of the JAK2/STAT3 signaling pathway, PCr holds immense promise in ameliorating the impact of DR in the face of oxidative stress induced by hyperglycemia.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Hiperglicemia , Doenças Mitocondriais , Animais , Ratos , Retinopatia Diabética/tratamento farmacológico , Fosfocreatina/farmacologia , Fosfocreatina/uso terapêutico , Espécies Reativas de Oxigênio , Apoptose , Hiperglicemia/tratamento farmacológico , Transdução de Sinais
5.
Curr Rev Clin Exp Pharmacol ; 19(2): 146-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37150987

RESUMO

Aging is a process characterized by accumulating degenerative changes resulting in the death of an organism. Aging is mediated by various pathways that are directly linked to the individual's lifespan and are shunted for many age-related diseases. Many strategies for alleviating age-related diseases have been studied, which can target cells and molecules. Modern drugs such as Metformin, Rapamycin, and other drugs are used to reduce the effects of age-related diseases. Despite their beneficial activity, they possess some side effects which can limit their applications, mainly in older adults. Natural phytochemicals which have anti-aging activities have been studied by many researchers from a broader aspect and suggested that plant-based compounds can be a possible, direct, and practical way to treat age-related diseases which has enormous anti-aging activity. Also, studies indicated that the synergistic action of phytochemicals might enhance the biological effect rather than the individual or summative effects of natural compounds. Curcumin has an antioxidant property and is an effective scavenger of reactive oxygen species. Curcumin also has a beneficial role in many age-related diseases like diabetes, cardiovascular disease, neurological disorder, and cancer. Aged garlic extracts are also another bioactive component that has high antioxidant properties. Many studies demonstrated aged garlic extract, which has high antioxidant properties, could play a significant role in anti-aging and age-related diseases. The synergistic effect of these compounds can decrease the requirement of doses of a single drug, thus reducing its side effects caused by increased concentration of the single drug.


Assuntos
Curcumina , Alho , Neoplasias , Antioxidantes/farmacologia , Alho/química , Curcumina/farmacologia , Extratos Vegetais/farmacologia , Neoplasias/tratamento farmacológico
6.
Am J Transl Res ; 15(11): 6451-6463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074804

RESUMO

BACKGROUND: Oncogenic processes in cancer are often characterized by dysregulation of critical genes. Our study focused on the minichromosome maintenance 10 replication initiation factor (MCM10) gene's expression and its potential diagnostic and prognostic implications in pan-cancer. METHOD: Leveraging large-scale genomic datasets, and experimental validation we embarked on a comprehensive analysis to shed light on the diagnostic and prognostic role of MCM10. RESULTS: Our findings underscore the wide-ranging up-regulation of MCM10 across 24 major cancer types, positioning it as a ubiquitous player in tumorigenesis. Significantly, MCM10 up-regulation was strongly associated with poorer overall survival in Kidney Renal Papillary Cell Carcinoma (KIRP), Liver Hepatocellular Carcinoma (LIHC), and Lung Adenocarcinoma (LUAD), emphasizing its potential as a valuable prognostic marker in these cancers. While genetic mutations often drive oncogenic processes, our mutational analysis revealed the relative stability of MCM10 in KIRP, LIHC, and LUAD. This suggests that epigenetic (hypomethylation) and non-mutational regulatory mechanisms predominantly govern MCM10 expression in these cancer types. Further analyses demonstrated positive correlations between MCM10 expression and immune cell infiltration, particularly CD8+ T cells and CD4+ T cells, offering insights into the gene's influence on the tumor immune microenvironment. Additionally, pathway enrichment analysis highlighted MCM10-associated genes' involvement in crucial signaling pathways, such as the cell cycle, DNA replication, and repair. Exploring the therapeutic potential, we examined important drugs capable of regulating MCM10 expression, opening doors to personalized treatment strategies. CONCLUSION: Our study elucidates the multifaceted roles of MCM10 in KIRP, LIHC, and LUAD. Its pervasive up-regulation, prognostic significance, epigenetic regulation, and influence on the immune microenvironment provide valuable insights into these cancers. This research contributes to the growing body of evidence surrounding MCM10 and invites further investigation, validation, and potential translational efforts to harness its clinical relevance.

7.
Artif Cells Nanomed Biotechnol ; 51(1): 590-603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902268

RESUMO

Nanotechnology holds substantial promise in the innovative therapies for rheumatoid arthritis (RA). The current study was designed to synthesize and characterize a new graphene titanate nanocomposite (GTNc) and explore its anti-arthritic, anti-inflammatory, and antioxidant potencies against Complete Freund's adjuvant (CFA)-induced arthritis in rats, as well as investigate the underlying molecular mechanisms. Our characterization methods included XRD, FT-IR, SEM, EDX, zeta potential, practical size, and XRF to characterize the novel GTNc. Our findings revealed that arthritic rats treated with GTNc exhibited lower levels of RF, CRP, IL-1ß, TNF-α, IL-17, and ADAMTS-5, and higher levels of IL-4 and TIMP-3. In arthritic rats, GTNc reduced LPO levels while increasing GSH content and GST antioxidant activity. Additionally, GTNc decreased the expression of the TGF-ß mRNA gene in arthritic rats. Histopathological investigation showed that GTNc reduced inflammatory cell infiltration, cartilage degradation, and bone destruction in joint injuries caused by CFA in the arthritic rats. Collectively, the anti-arthritic, anti-inflammatory, and antioxidant properties of GTNc appear promising for future arthritis treatments and bone disability research.


Assuntos
Artrite Experimental , Grafite , Ratos , Animais , Grafite/farmacologia , Antioxidantes/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Adjuvante de Freund/efeitos adversos , Anti-Inflamatórios/farmacologia
8.
Mol Biol Rep ; 50(12): 9951-9961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878206

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been extensively used as cell-based treatments for decades due to their anti-inflammatory, immunomodulatory, and healing abilities. The intent of our study was to determine the efficacy of MSCs in alleviating rheumatoid arthritis (RA) induced by Complete Freund's adjuvant (CFA) and to investigate the anti-inflammatory and antioxidant characteristics of MSCs. METHODS AND RESULTS: Intrapedally injecting 0.1 ml of CFA directly into the footpad of the right hind paw daily for 2 days was used to induce RA. Arthritic rats received four doses of MSCs (1 × 106 cells/rat/dose) intravenously through the lateral tail vein. Our results showed that arthritic rats treated with MSCs exhibited reduced levels of paw edema. Furthermore, arthritic rats treated with MSCs exhibited a significant decrease in the levels of RF, CRP, IL-1ß, TNF-α, IL-17 and ADAMTS-5, along with a significant increase in the levels of IL-4 and TIMP-3. Additionally, MSCs significantly reduced the expression of TGF-ß. Both the glutathione (GSH) content and antioxidant activity of GST were enhanced by MSCs, while LPO levels were suppressed. CONCLUSION: These findings provide further evidence that MSCs are valuable in treating RA, possibly due to their anti-inflammatory and anti-oxidative properties. Thus, MSCs have potential as a more effective therapeutic strategy for treating RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Células-Tronco Mesenquimais , Ratos , Animais , Antioxidantes/metabolismo , Artrite Experimental/terapia , Artrite Experimental/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/terapia , Artrite Reumatoide/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo
9.
Cancers (Basel) ; 15(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835481

RESUMO

Statins are an essential medication class in the treatment of lipid diseases because they inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. They reduce cholesterol levels and reduce the risk of cardiovascular disease in both primary and secondary prevention. In addition to their powerful pharmacologic suppression of cholesterol production, statins appear to have pleitropic effects in a wide variety of other diseases by modulating signaling pathways. In recent years, statins have seen a large increase in interest due to their putative anticancer effects. Statins appear to cause upregulation or inhibition in key pathways involved in cancer such as inhibition of proliferation, angiogenesis, and metastasis as well as reducing cancer stemness. Further, statins have been found to induce oxidative stress, cell cycle arrest, autophagy, and apoptosis of cancer cells. Interestingly, clinical studies have shown that statin use is associated with a decreased risk of cancer formation, lower cancer grade at diagnosis, reduction in the risk of local reoccurrence, and increasing survival in patients. Therefore, our objective in the present review is to summarize the findings of the publications on the underlying mechanisms of statins' anticancer effects and their clinical implications.

10.
Biomedicines ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37760826

RESUMO

Prostate cancer treatment poses significant challenges due to its varying aggressiveness, potential for metastasis, and the complexity of treatment options. Balancing the effectiveness of therapies, minimizing side effects, and personalizing treatment strategies are ongoing challenges in managing this disease. Significant advances in the use of nanotechnology for the treatment of prostate cancer with high specificity, sensitivity, and efficacy have recently been made. This study aimed to synthesize and characterize a novel Cu/Fe layer double hydroxide (LDH) nanocomposite for use as an anticancer agent to treat prostate cancer. Cu/Fe LDH nanocomposites with a molar ratio of 5:1 were developed using a simple co-precipitation approach. FT-IR, XRD, SEM, TEM, TGA, and zeta potential analyses confirmed the nanocomposite. Moreover, the MTT cell viability assay, scratch assay, and flow cytometry were utilized to examine the prospective anticancer potential of Cu/Fe LDH on a prostate cancer (PC-3) cell line. We found that Cu/Fe LDH reduced cell viability, inhibited cell migration, induced G1/S phase cell cycle arrest, and triggered apoptotic effect in prostate cancer cells. The findings also indicated that generating reactive oxygen species (ROS) formation could improve the biological activity of Cu/Fe LDH. Additionally, Cu/Fe LDH showed a good safety impact on the normal lung fibroblast cell line (WI-38). Collectively, these findings demonstrate that the Cu/Fe LDH nanocomposite exhibited significant anticancer activities against PC-3 cells and, hence, could be used as a promising strategy in prostate cancer treatment.

11.
Food Sci Nutr ; 11(6): 3506-3515, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324860

RESUMO

Commiphora gileadensis (C. gileadensis) has been identified and linked with various health benefits and pharmaceutical potential for its phytochemical activities and chemical constituents. This study aimed to evaluate ultrasonic-assisted extraction (USE) technique for total phenols content from C. gileadensis leaf compared to the hydrodistillation extraction (HDE). Our results showed that the USE operating conditions were identified as: MeOH·H2O solvent-to-fresh sample ratio of 80:20 (v/v); ultrasonic power/frequency at 150 W/20 kHz; and a temperature of 40 ± 1°C; subjected to acoustic waves intermittently for a calculated time (5 min) during the total programmed time of 12 min. The USE exhibited (118.71 ± 0.009 mg GAE/g DM) more amounts of all phenols than HDE (101.47 ± 0.005 mg GAE/g DM), and antioxidant (77.78 ± 0.73%, 75.27 ± 0.59% scavenging inhibition of DPPH), respectively. Anti-aging and Cytotoxicity activities were investigated. The results of biological evaluations showed that the crude extracts of C. gileadensis significantly extended the replicative lifespan of K6001 yeast. In addition, in vitro cytotoxicity against the HepG2 cell line showed significant anticancer activity, and approximately 100 µg/mL is required to decrease viability compared with that of the control. This study is proven for a larger scale to extract and isolate compounds of C. gileadensis for potential utilization in the pharmaceutical industry. In conclusion, advanced methods afford an extract with high activity in the biological properties of the extract.

12.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259429

RESUMO

Rheumatoid arthritis (RA) is a long-term autoimmune disease. As nanotechnology has advanced, a growing number of nanodrugs have been used in the treatment of RA due to their unique physical and chemical properties. The purpose of this study was to assess the therapeutic potential of a novel zeolite/vitamin B12 nanocomposite (Nano ZT/Vit B12) formulation in complete Freund's adjuvant (CFA)-induced arthritis. The newly synthesized Nano ZT/Vit B12 was fully characterized using various techniques such as XRD, FT-IR, BET analysis, HERTEM, SEM, practical size, zeta potential, XRF, and EDX. The anti-arthritic, anti-inflammatory, and antioxidant activities as well as the immunomodulation effect of Nano ZT/Vit B12 on the CFA rat model of arthritis were examined. Histopathologic ankle joint injuries caused by CFA intrapedal injection included synovium hyperplasia, inflammatory cell infiltration, and extensive cartilage deterioration. The arthritic rats' Nano ZT/Vit B12 supplementation significantly improved these effects. Furthermore, in arthritic rats, Nano ZT/Vit B12 significantly reduced serum levels of RF and CRP, as well as the levels of IL-1ß, TNF-α, IL-17, and ADAMTS-5, while increasing IL-4 and TIMP-3 levels. Nano-ZT/Vit B12 significantly declined the LPO level and increased antioxidant activities, such as GSH content and GST activity, in the arthritic rats. In arthritic rats, Nano ZT/Vit B12 also reduced TGF-ß mRNA gene expression and MMP-13 protein levels. Collectively, Nano ZT/Vit B12 seems to have anti-arthritic, anti-inflammatory, and antioxidant properties, making it a promising option for RA in the future.

13.
Nat Prod Bioprospect ; 13(1): 16, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171512

RESUMO

Urtica dioica is a perennial herb from the family of Urticaceae that is commonly known as stinging nettle. This plant is widespread in Europe, Africa, America, and a part of Asia, as it adapts to different environments and climatic conditions. The leaves, stalk, and bark of U. dioica found applications in the field of nutrition, cosmetics, textile, pest control and pharmacology. In this connection, bioactive chemical constituents such as flavonoids, phenolic acids, amino acids, carotenoids, and fatty acids have been isolated from the plant. With this review, we aim at providing an updated and comprehensive overview of the contributions in literature reporting computational, in vitro, pre-clinical and clinical data supporting the therapeutic applications of U. dioica. Experimental evidence shows that U. dioica constituents and extracts can provide neuroprotective effects by acting through a combination of different molecular mechanisms, that are discussed in the review. These findings could lay the basis for the identification and design of more effective tools against neurodegenerative diseases.

14.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111308

RESUMO

The usage of nanomaterials for rheumatoid arthritis (RA) treatment can improve bioavailability and enable selective targeting. The current study prepares and evaluates the in vivo biological effects of a novel hydroxyapatite/vitamin B12 nanoformula in Complete Freund's adjuvant-induced arthritis in rats. The synthesized nanoformula was characterized using XRD, FTIR, BET analysis, HERTEM, SEM, particle size, and zeta potential. We synthesized pure HAP NPs with 71.01% loading weight percentages of Vit B12 and 49 mg/g loading capacity. Loading of vitamin B12 on hydroxyapatite was modeled by Monte Carlo simulation. Anti-arthritic, anti-inflammatory, and antioxidant effects of the prepared nanoformula were assessed. Treated arthritic rats showed lower levels of RF and CRP, IL-1ß, TNF-α, IL-17, and ADAMTS-5, but higher IL-4 and TIMP-3 levels. In addition, the prepared nanoformula increased GSH content and GST antioxidant activity while decreasing LPO levels. Furthermore, it reduced the expression of TGF-ß mRNA. Histopathological examinations revealed an improvement in joint injuries through the reduction of inflammatory cell infiltration, cartilage deterioration, and bone damage caused by Complete Freund's adjuvant. These findings indicate that the anti-arthritic, antioxidant, and anti-inflammatory properties of the prepared nanoformula could be useful for the development of new anti-arthritic treatments.

15.
Life Sci ; 315: 121374, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621539

RESUMO

In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T , COVID-19/prevenção & controle , Antígenos de Histocompatibilidade Classe I/química , Desenvolvimento de Vacinas
16.
Clin Transl Med ; 13(1): e1153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639831

RESUMO

BACKGROUND: The MYC oncoprotein, also known as the master regulator of genes, is a transcription factor that regulates numerous physiological processes, including cell cycle control, apoptosis, protein synthesis and cell adhesion, among others. MYC is overexpressed in approximately 70% of human cancers. Given its pervasive role in cancer biology, MYC down-regulation has become an attractive cancer treatment strategy. METHODS: The CRISPR/Cas9 method was used to produce KO cell models. Western blot was used to analyzed the expressions of MYC and TATA-binding proteinassociated factors 10 (TAF10) in cancer cells (MCF7, A549, HepG2 cells) Cell culture studies were performed to determine the mechanisms by which small molecules (Z363119456, Z363) affects MYC and TAF10 expressions and functions. Mouse studies were carried out to investigate the impact of Z363 regulation on tumor growth. RESULTS: Z363 activate Thyroid hormone Receptor-interacting Protein 12 (TRIP12), which phosphorylates MYC at Thr58, resulting in MYC ubiquitination and degradation and thereby regulating MYC target genes. Importantly, TRIP12 also induces TAF10 degradation, which reduces MYC protein levels. TRIP12, an E3 ligase, controls MYC levels both directly and indirectly by inhibiting MYC or TAF10 activity. CONCLUSIONS: In summary,these results demonstrate the anti-cancer properties of Z363, a small molecule that is co-regulated by TAF10 and MYC.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Fatores Associados à Proteína de Ligação a TATA , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo
17.
Inflammation ; 46(1): 146-160, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35997998

RESUMO

A simultaneous increase in the prevalence of diabetes mellitus (DM), a risk factor for cardiovascular diseases (CVDs), has contributed to the escalation of CVD related mortalities. To date, oxidative stress and inflammation are increasingly recognized as significant drivers of cardiovascular complications in patients with diabetes. Therefore, this study aims to explore the correlation between oxidative stress, inflammation, and hematological indices in diabetic patients with CVDs. Patients were allocated into five groups: healthy controls; nondiabetic patients with myocardial infarction; diabetic patients with myocardial infarction; nondiabetic patients with heart failure; and diabetic patients with heart failure. The results revealed that the malondialdehyde levels were increased; whereas superoxide dismutase enzyme activities were markedly reduced in all CVD groups compared with those of healthy controls. Although the mRNA expression levels of interleukin (IL)-6, IL-18, and IL-38 were significantly increased, those of the anti-inflammatory cytokine, IL-35, have been reduced in all CVD groups compared with healthy controls. Regarding hematological indices, hematocrit, red blood cell distribution width, mean platelet (PLT) volume, plateletcrit, PLT distribution width, leukocyte count, and PLT-to-lymphocyte and neutrophil-to-lymphocyte ratios were markedly increased in the diabetic and nondiabetic CVD groups compared with those of the healthy controls. Oxidative stress and cytokine biomarkers may play a significant role in the complications of diabetic cardiomyopathy. Moreover, hematological indices are particularly sensitive to systemic inflammatory changes and are novel markers for the early detection of diabetic cardiomyopathy.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Citocinas , Cardiomiopatias Diabéticas/complicações , Estresse Oxidativo , Inflamação/complicações , Interleucina-6 , Insuficiência Cardíaca/complicações , Interleucinas
18.
Front Immunol ; 13: 1027472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389769

RESUMO

Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.


Assuntos
Tuberculose Latente , MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Tuberculose/diagnóstico , Tuberculose/genética , Mycobacterium tuberculosis/genética , Tuberculose Latente/diagnóstico , Tuberculose Latente/genética , Biomarcadores/metabolismo , Fatores Imunológicos
19.
Aging Dis ; 13(5): 1471-1487, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36186127

RESUMO

Excessive sodium fluoride (NaF) intake interferes with reproductive function in humans and animals; however, strategies to prevent these effects are still underexplored. Here, we showed that in vivo and in vitro supplementation of folic acid (FA) efficaciously improved the quality of NaF-exposed oocytes. FA supplementation not only increased ovulation of oocytes from NaF-treated mice but also enhanced oocyte meiotic competency and fertilization ability by restoring the spindle/chromosome structure. Moreover, FA supplementation could exert a beneficial effect on NaF- exposed oocytes by restoring mitochondrial function, eliminating reactive oxygen species accumulation to suppress apoptosis. We also found that FA supplementation restored the defective phenotypes in oocytes through a Sirt1/Sod2-dependent mechanism. Inhibition of Sirt1 with EX527 abolished the FA-mediated improvement in NaF-exposed oocyte quality. Collectively, our data indicated that FA supplementation is a feasible approach to protect oocytes from NaF-related deterioration.

20.
Cell Mol Biol Lett ; 27(1): 69, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986247

RESUMO

Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main  contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.


Assuntos
Células-Tronco Mesenquimais , Adulto , Envelhecimento/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Senescência Celular/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...